Knowledge Discovery Conducted in the Areas of Machine Learning by High Performance Computing Using Evaluation of Learning Algorithms
نویسنده
چکیده
The last decade has seen considerable growth in interest in Artificial Intelligence and Machine Learning. In the broadest sense, these fields aim to ‘learn something useful’ about the environment within which the organism operates. How gathered information is processed leads to the development of algorithms, how to process high dimensional data and deal with uncertainty. In the early stages of research in Machine Learning and related areas, similar techniques were discovered in relatively isolated research communities. Whilst not all techniques have a natural description in terms of probability theory, many do, and it is the framework of Graphical Models (a marriage between graph and probability theory) that has enabled the understanding and transference of ideas from statistical physics, statistics, machine learning and information theory. To this extent, it is now reasonable to expect that machine learning researchers are familiar with the basics of statistical modelling techniques. we apply different machine learning (ML) techniques for building objective models, that permit to automatically assess the image quality in agreement with human visual perception. The six ML methods proposed are discriminant analysis, k-nearest neighbors, artificial neural network, non-linear regression, decision tree and fuzzy logic. Both the stability and the robustness of designed models are evaluated by using Monte-Carlo cross-validation approach (MCCV). The simulation results demonstrate that fuzzy logic model provides the best prediction accuracy.
منابع مشابه
Machine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملDrug Discovery Acceleration Using Digital Microfluidic Biochip Architecture and Computer-aided-design Flow
A Digital Microfluidic Biochip (DMFB) offers a promising platform for medical diagnostics, DNA sequencing, Polymerase Chain Reaction (PCR), and drug discovery and development. Conventional Drug discovery procedures require timely and costly manned experiments with a high degree of human errors with no guarantee of success. On the other hand, DMFB can be a great solution for miniaturization, int...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کامل